Array operations visualization

3542: Minimum Operations to Convert All Elements to Zero

Difficulty: Medium
Topics: Arrays, Greedy Algorithms, Counting
Companies: Google, Meta, Amazon
Key Insight: The optimal strategy requires processing elements in sorted order and counting contiguous value groups.

Problem Statement

Given an array of non-negative integers, determine the minimum number of operations needed to make all elements zero. Each operation lets you select a subarray and set all occurrences of its minimum value to zero.

Example 1

Input: nums = [0,2]
Output: 1
Explanation: Target subarray [1,1] containing 2

Example 2

Input: nums = [3,1,2,1]
Output: 3
Explanation: Requires three targeted operations
Problem Link: View on LeetCode ↗

Approach 1: Greedy Group Counting (Optimal)

Process elements in sorted order, counting contiguous groups for each value.

Algorithm Steps

  1. Sort unique values in ascending order
  2. For each value v:
    • Count contiguous groups of v separated by higher values/zeros
    • Add group count to total operations

Complexity Analysis

Time Complexity Space Complexity
O(n log n) O(n)
Optimal Solution
class Solution {
public:
    int minOperations(vector<int>& nums) {
        set<int> unique(nums.begin(), nums.end());
        vector<int> sorted(unique.begin(), unique.end());
        int total = 0;
        
        for(int v : sorted) {
            if(v == 0) continue;
            int count = 0;
            bool inGroup = false;
            for(int num : nums) {
                if(num >= v) {
                    if(num == v && !inGroup) {
                        count++;
                        inGroup = true;
                    }
                    if(num != v) inGroup = false;
                } else {
                    inGroup = false;
                }
            }
            total += count;
        }
        return total;
    }
};
class Solution {
    public int minOperations(int[] nums) {
        Set<Integer> unique = new HashSet<>();
        for(int num : nums) unique.add(num);
        List<Integer> sorted = new ArrayList<>(unique);
        Collections.sort(sorted);
        int total = 0;
        
        for(int v : sorted) {
            if(v == 0) continue;
            int count = 0;
            boolean inGroup = false;
            for(int num : nums) {
                if(num >= v) {
                    if(num == v && !inGroup) {
                        count++;
                        inGroup = true;
                    }
                    if(num != v) inGroup = false;
                } else {
                    inGroup = false;
                }
            }
            total += count;
        }
        return total;
    }
}
class Solution:
    def minOperations(self, nums: List[int]) -> int:
        unique = sorted(set(nums))
        total = 0
        for v in unique:
            if v == 0:
                continue
            count = 0
            in_group = False
            for num in nums:
                if num >= v:
                    if num == v and not in_group:
                        count += 1
                        in_group = True
                    if num != v:
                        in_group = False
                else:
                    in_group = False
            total += count
        return total
Implementation Insight: This solution efficiently counts value groups without modifying the original array, achieving O(n log n) time through sorting and linear scans.

Approach Comparison

Approach Time Space Use Case
Greedy Group Counting O(n log n) O(n) General case, optimal solution
Frequency Map O(n²) O(n) Theoretical alternative
Important: The optimal approach leverages sorting and linear scanning to achieve efficiency, crucial for handling large input sizes up to 10⁵ elements.

Edge Case Analysis

1. All Elements Zero

Input: [0,0,0] → Output: 0

2. Strictly Increasing

Input: [1,2,3,4] → Output: 4

3. Alternating Values

Input: [2,1,2,1] → Output: 2
Pitfall Alert: Always handle zero values explicitly to avoid unnecessary operations.

Frequently Asked Questions

1. Why process values in sorted order?

Smaller values can be eliminated first, creating segments that reduce operations needed for larger values.

2. How does group counting work?

Contiguous blocks of the same value separated by higher values/zeros each require one operation.

3. Why O(n log n) complexity?

Due to sorting unique values. Linear scans afterward maintain efficiency.

4. Can we optimize further?

This is already optimal for constraints. Further optimization would require different mathematical modeling.

5. How handle duplicate values?

Duplicates in the same contiguous group are handled in a single operation.

6. Why use set for unique values?

Ensures we process each value exactly once, avoiding redundant calculations.

7. What if all elements are same?

Requires exactly 1 operation regardless of array size.

8. How verify correctness?

Check that each operation reduces the maximum value until all elements are zero.

9. Why track 'inGroup' state?

Prevents overcounting by tracking contiguous value sequences efficiently.

10. Real-world applications?

Resource deallocation, memory management, and optimization problems in distributed systems.

Final Insight: This problem demonstrates how careful value processing order and group counting can lead to efficient solutions for seemingly complex array transformation challenges.